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1 Introduction

The exploration of our solar system is driven by three fundamental goals: the

search for life beyond Earth, the identification of valuable resources to support

future endeavors and humanity’s curiosity to understand the universe and our

place within it. One of the most promising candidates in the search for extrater-

restrial life is Enceladus, a moon of Saturn that has captured the attention of

scientists and space agencies. Located far from the Sun, Enceladus experiences

extremely cold temperatures and receives very little solar energy. Despite these

harsh conditions, the European Space Agency (ESA) has identified Enceladus

as a key target for future missions. They believe that the moon could host life,

due to a subsurface ocean with a powerful source of chemical energy that could

potentially fuel living organisms [18]. Furthermore, the plumes ejected from its

icy crust are rich in organic compounds.

1.1 Historical Background

Enceladus was discovered in 1789 by Sir William Herschel. It is one of Saturn’s

moons, has a diameter of approximately 504 km and orbits Saturn at a distance of

about 238 000 km [27]. Previous interplanetary missions, such as Voyager 1 and

2, conducted flybys of Saturn, which provided valuable data about the planet

and its moons [27]. The Cassini-Huygens mission further revealed the mysteries

of Enceladus through detailed observations and data collection during its close

encounters with the moon [24]. Given this historical context, planning a journey

to this celestial body is not only realistic but also a natural progression in the

ongoing quest to understand our solar system.

1.2 Personal Motivation

My personal motivation for this paper is to deepen my understanding of the math-

ematics, physics and computational principles underlying interplanetary travel.

This exploration will not only enhance my understanding of scientific concepts,

such as gravitational forces and the dynamics of multibody systems, but also

allow me to appreciate the engineering marvels that make space travel possible.

Engaging with this topic will provide me with valuable insights into the real-world

applications of theoretical principles in the field of aerospace engineering.

1.3 Aim

The objective of this paper is to plan a journey from Earth to Enceladus. This

plan will incorporate the use of multiple gravity assists (MGA), the Oberth effect

and deep space maneuvers (DSMs). First, I will calculate the trajectory of an
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existing mission, where the departure time, flybys and arrival details are already

known. Then, I will design a new trajectory for a future mission to Enceladus,

determining the optimal departure time, identifying suitable flybys and estab-

lishing a timeline for arrival. This trajectory will be optimised to minimise the

total change in velocity (∆v) required for the mission. With this paper, I aim

to contribute to the ongoing dialogue about the feasibility of future missions to

Enceladus.
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2 Fundamental Concepts

To successfully carry out this work, it is essential to understand the following

fundamental concepts behind interplanetary space travel.

2.1 Planetary Information

2.1.1 Ephemerides

Knowing the positions and velocities of celestial bodies at any given time is crucial

for planning flybys and determining arrival points.

While planets follow elliptical orbits described by Kepler’s laws [22], these

orbits are influenced by several perturbations:

• Gravitational Interactions: The gravitational pull from other planets,

moons and stars alters a planet’s orbit and thus causes small changes in

position and velocity. This can lead to phenomena like orbital resonances,

where bodies’ orbits become synchronised. This amplifies their gravitational

effects [5].

• Uneven Mass Distribution: Planets with non-uniform mass distribu-

tions (e.g., mountains or oceans) experience slight orbital shifts due to gravi-

tational imbalances, known as the J2 perturbation, especially in planets like

Earth with an oblate shape [5].

• Relativistic Effects: According to general relativity, massive objects warp

space-time, causing slight changes in a planet’s orbit. For example, Mer-

cury’s orbit experiences precession due to relativistic effects from the Sun’s

gravity [36].

These perturbations complicate the calculations and require more advanced mod-

els than Kepler’s laws for higher accuracy. Entire books, like Astronomical Al-

gorithms by Jean Meeus [5], span hundreds of pages solely dedicated to these

complex calculations.

Fortunately, existing libraries handle these calculations for us by providing

ephemerides, which offer the position and velocity of a celestial body at any

given time. In practical terms, ephemerides can be viewed as a function that

provides the position R and velocity V of a celestial body at a specific point in

time, expressed as

[R, V ] = Ephemerides(b, t) , (1)

where b is the identifier of the body and t is the epoch.1 In this paper, we will use

1In astronomy, an epoch is a specific point in time used as a reference for tracking changing
astronomical measurements. It is important because celestial coordinates and orbital elements
vary over time due to gravitational influences.
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the Jet Propulsion Laboratory (JPL) ephemerides provided by NASA [7], which

are based on real observations, with interpolation for times between data points

and with extrapolation for future predictions.

While the ephemerides provide a reliable foundation for planetary positions

and velocities, they only partially simplify my task. I still needed to perform

the majority of the work, including trajectory assembly, optimization and all

associated calculations.

2.1.2 Mass

In addition to determining the position and velocity of celestial bodies, it is

essential to account for the gravitational pull exerted by each planet, as described

by Newton’s law of universal gravitation [32]. The gravitational force is given by

the equation

F = G
m1m2

r2
, (2)

where F is the force, m1 and m2 are the masses of the objects interacting, r is the

distance between the centers of the masses and G is the gravitational constant

[32]. Thus, the gravitational force depends on the masses of both interacting

bodies and knowing the mass of the Sun and each planet is therefore crucial.

Fortunately, Python libraries provide easy access to mass data and thus simplify

the process.2

2.2 Gravity Assist

A gravity assist, commonly referred to as a slingshot maneuver or unpowered

flyby, is a vital technique used in interplanetary travel to gain speed and change

trajectory without expending additional fuel. The fundamental principle behind

a gravity assist involves the conservation of energy and momentum during a

spacecraft’s flyby of a celestial body [28].

The principle of conservation of energy asserts that the total energy in a

closed system remains constant over time [25]. Specifically, for a spacecraft in

motion, this means that the incoming kinetic energy (Ein) at the start of an

interaction is equal to the outgoing kinetic energy (Eout) once the interaction has

occurred, assuming no energy is lost to external forces. Mathematically, this can

be expressed as

Ein = Eout . (3)

Thus, the speed of the spacecraft relative to the celestial body is the same

before and after the encounter. However, because the celestial body also moves

2For example the poliastro library [13].
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in respect to the Sun, the spacecraft’s velocity in respect to the Sun also changes

[8], illustrated in Figure 1.

Figure 1: Spacecraft’s velocity change due to a gravity assist. In the Moving with Planet frame,
the spacecraft’s incoming and outgoing velocities (vin and vout) have the same magnitude, as the
gravitational interaction only changes the direction of the spacecraft’s velocity. Considering the
principle of conservation of energy, this behavior is logical since Ein = Eout and thus vin = vout.
In the Planet Moving Left frame, where the planet is considered to be moving, the spacecraft’s
outgoing velocity relative to the frame is greater than its incoming velocity due to the additional
velocity contribution from the planet’s motion. The planet’s own velocity (vpl) is simply added
to the outgoing velocity of the spacecraft relative to the planet (vout).

This process can easily be explained mathematically, since the trajectory of

the spacecraft relative to the planet is a hyperbolic trajectory, as shown in Figure

2. This is the case because the spacecraft approaches the planet from a large

distance with a velocity high enough to escape the planet’s gravitational influence.

As the spacecraft passes near the planet, the planet’s gravity bends its trajectory,

changing its direction and speed. However, because the spacecraft’s velocity is

above the escape velocity of the planet, it is not captured into orbit but instead

follows an open, hyperbolic path. The gravitational interaction does not result in

a bound elliptical or circular orbit, but results in a hyperbolic trajectory where

the spacecraft exits the gravitational influence after the flyby [30].

7



Figure 2: Hyperbolic trajectory of a spacecraft during a gravity assist [30]. The spacecraft’s ap-
proach velocity (v∞, also called hyperbolic excess velocity because it represents the spacecraft’s
velocity relative to a celestial body at infinite distance, where the gravitational influence of the
body is negligible) is marked along the initial horizontal trajectory and the impact parameter
(b) is indicated as the perpendicular distance between the trajectory and the central body. The
angle δ represents the deflection angle of the spacecraft as it follows its hyperbolic path. The
central body is shown as a black dot at the origin, while the spacecraft’s initial position is
marked as a red dot. The dashed line represents the asymptotes of the hyperbolic trajectory
and the solid blue curve illustrates the spacecraft’s actual path.

Therefore, by knowing the impact parameter b (which indicates how closely

the spacecraft would pass by the planet in the absence of gravitational influence,

see Figure 2) and the spacecraft’s initial velocity v∞ (known as the hyperbolic

excess velocity, see Figure 2 for further details), one can very easily calculate

all the necessary parameters, such as the semi-major axis a, the eccentricity e,

the periapsis distance rp and the deflection angle δ, to describe this hyperbolic

trajectory [30].

The semi-major axis a (shown in Figure 2) can be calculated with this formula

a = −Gm

v2∞
, (4)

the eccentricity e is

e =

√
1 +

b2

a2
, (5)

the periapsis distance rp is

rp = −a(e− 1) (6)
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and the deflection angle δ is

δ = 2arcsin(
1

e
) . (7)

Following these calculations, Figure 3 illustrates the effect of the impact pa-

rameter on the spacecraft’s path and velocity as and Figure 4 the outcomes of

gravity assist maneuvers based on different approach configurations.

This figure, along with all other graphs and associated calculations in this

paper, was created by me using custom python3 scripts and the matplotlib

library, which I developed specifically for this project.

Figure 3: Effect of the impact parameter (b) on hyperbolic trajectories and spacecraft velocity.
A smaller b (e.g., b = 0.5) results in a sharper turn due to a stronger gravitational interaction,
while larger b values produce more gradual curves. As the spacecraft approaches the central
body, its velocity peaks due to gravitational acceleration. Smaller impact parameters result
in higher peak velocities as the gravitational forces are stronger due to the smaller distance
between both bodies. Note that the graph is unitless because it is intended to visualise general
trends and outcomes rather than specific examples. The focus is on illustrating the qualitative
effects of varying the impact parameter b on the trajectory and velocity, without requiring
precise numerical values. The graph is also presented in the frame moving with the planet, as
if the planet were stationary.
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Figure 4: Possible outcomes of gravity assist maneuvers depending on the velocity vector and
flyby position of the incoming spacecraft. The black lines represent the planet’s trajectory and
the blue lines depict the spacecraft’s trajectory before and after the maneuver. The black dot
indicates the position of the planet and the red dot marks the spacecraft’s position at closest
approach (at t = 0). The hyperbolic excess velocity v∞ is 1 and the impact parameter b is also
1. The time frame for the simulation is [−4, 4] (with the trajectories of the planet and spacecraft
plotted from t = −4 to t = 4). The various configurations show how changes in approach angle
and flyby distance affect the spacecraft’s exit path. Depending on the velocity vector of the
planet, the gravity assist can either speed up or slow down the spacecraft, both of which are
useful in interplanetary travel. Additionally, the change in direction can vary significantly based
on these parameters. Note that the configuration in the middle shows the absence of movement,
corresponding to the scenario in Figure 3.

2.2.1 Advantages and Limits

Gravity assists provide a highly effective way of increasing a spacecraft’s velocity

without expending fuel. This conserves its propellant resources and is particu-

larly advantageous in interplanetary missions where the delta-v budget (the total
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change in velocity required, which is directly related to fuel consumption) is crit-

ical. We will discuss this in more detail later, in Section 2.5.

The primary constraint is the necessity of perfect alignments of planets, which

can be infrequent.3 Atmospheric drag also poses a challenge [28]. While closer

approaches can yield more kinetic energy, excessive atmospheric entry can lead

to energy loss due to drag. Additionally, as the periapsis (the distance between

the spacecraft and the central body) decreases, the forces acting on the space-

craft increase exponentially (see Equation 2 and Figure 3 for more). This could

ultimately damage or destroy the spacecraft. Finally, the planet has a physical

volume, which establishes a minimum periapsis. If the spacecraft approaches any

closer, it will crash into the planet.

2.3 Oberth Effect

The Oberth effect is a phenomenon in space travel that increases the efficiency of

a spacecraft’s engine when operating at high speeds, particularly when the space-

craft is near a massive celestial body, such as a planet [33]. When a spacecraft

approaches a planet, it speeds up due to gravity. At that moment, the spacecraft

can gain even more speed by firing its engines. The increase in kinetic energy

is much greater than if the engines were fired when the spacecraft was moving

slowly.

The basis of the Oberth effect is that kinetic energy increases with the square

of velocity, but a rocket burn provides the same ∆v regardless of the spacecraft’s

current speed. This means that a small increase in velocity at high speeds results

in a much larger increase in kinetic energy.

The change in kinetic energy (∆Ekin) during a burn can be expressed as

∆Ekin =
1

2
m(v2f − v2i ) , (8)

where m is the mass of the spacecraft, vf the final velocity after the burn and vi

initial velocity before the burn [31].

Since kinetic energy is proportional to the square of velocity (Ekin = 1
2mv2),

a small speed increase results in a larger energy gain at higher speeds. Therefore,

Oberth maneuvers or powered flybys allow spacecrafts to use their fuel more

effectively, especially when flying close to planets, e.g. during gravity assists.

3For instance, the Grand Tour alignment of Jupiter, Saturn, Uranus and Neptune, which
enabled the Voyager missions, will not occur again until the mid-22nd century [28].
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Example

Let’s assume the spacecraft has a mass of m = 1000 kg, a hyperbolic excess

velocity of v∞ = 10 000m/s and its highest velocity during the gravity assist

is vmax = 15 000m/s. The spacecraft will perform a burn that will increase its

velocity by ∆v = 2000m/s. The burn will either occur at the closest approach

(periapsis) or at a point far from the planet and we will compare the energy

change in both cases.

Performing the burn at the closest approach (periapsis): At closest ap-

proach, the spacecraft’s velocity is high due to gravitational acceleration. There-

fore, we calculate the change in kinetic energy using Equation 8 and substitute

the given values:

∆Ekin =
1

2
m(v2f − v2i ) (9)

∆Ekin =
1

2
× 1000 kg × ((15 000+2000 )

2 − 15 0002)m2/s2 (10)

∆Ekin = 32 000 000 000 J (11)

So, the spacecraft gains 32 billion joules of kinetic energy when the burn is per-

formed performed at periapsis.

Performing the burn far from the planet: Now, let’s assume the space-

craft performs the burn far from the planet, where its velocity is lower (v∞ =

10 000m/s). We calculate the change in kinetic energy again by substituting the

values:

∆Ekin =
1

2
m(v2f − v2i ) (12)

∆Ekin =
1

2
× 1000 kg × ((10 000+2000 )

2 − 10 0002)m2/s2 (13)

∆Ekin = 22 000 000 000 J (14)

So, the spacecraft gains 22 billion joules of kinetic energy when the burn is per-

formed performed far from the planet.

Conclusion: In this example, performing the burn at the closest approach (pe-

riapsis) results in a larger increase in kinetic energy (32 billion joules) compared

to performing the burn far from the planet (22 billion joules). This demonstrates

the advantage of conducting burns at high velocities, because the Oberth effect

leads to a more efficient use of fuel and a greater energy gain when the spacecraft

is moving quickly.
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2.4 Deep-Space Maneuver (DSM)

Deep Space Maneuvers (DSMs) are impulsive propulsion maneuvers employed

between flybys to fine-tune a spacecraft’s direction and velocity [34]. These ma-

neuvers use the spacecraft’s propulsion system to make necessary adjustments,

ensuring that it remains on its intended trajectory.

2.5 Delta-v Budget

The delta-v budget refers to the total velocity change (in km/s) that a spacecraft

needs to achieve its mission objectives. It includes maneuvers such as launches,

orbit insertions, transfers and landings. The delta-v budget directly correlates to

the fuel consumption of a mission [26].

It should be noted that fuel consumption in space travel follows an exponential

trend, as described by the Tsiolkovsky rocket equation in Figure 5 [37].

Figure 5: Relationship between mass ratio (initial mass to final mass) and the change in velocity
(∆v) normalised by exhaust velocity (ve), as described by the Tsiolkovsky rocket equation [37].

It states that m0
mf

= e
∆v
ve , where m0 is the initial mass of the spacecraft (including fuel), mf

is the final mass of the spacecraft (excluding fuel), ∆v is the total change in velocity and ve is
the effective exhaust velocity, or the speed at which the exhaust leaves the rocket. The steep
exponential increase shows that even small increases in ∆v require a significantly larger mass
ratio. It emphasises the importance of optimising spacecraft trajectories to minimise ∆v in
order to reduce fuel requirements and improve mission efficiency.

As the spacecraft must carry additional fuel to support subsequent maneuvers,

the amount required increases significantly. Therefore, effectively managing the

delta-v budget by minimising DSMs and powered flybys is essential to reduce

overall fuel needs at launch. This ultimately improves the mission’s payload

capacity.
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2.6 Lambert’s Problem

Lambert’s problem in celestial mechanics involves determining an orbit based on

two known position vectors and the time taken to travel between them [23]. This

problem is crucial for mission planning, especially for interplanetary trajectories,

where a spacecraft moves from point P1 to point P2 while being influenced by a

gravitational body C. The objective is to calculate the start and end velocities

for a spacecraft travelling between these two points.

Figure 6: Application of Lambert’s problem for a transfer between two planetary orbits [17].
It determines the orbit connecting two positions (P1 and P2) around a central body C within
a specified time. The figure shows a possible transfer orbit between Planet 1 and Planet 2,
with initial and final velocity vectors (v1 and v2), and the angle (θ) between the two position
vectors. The blue line represents the calculated trajectory of the spacecraft, which satisfies
the conditions of traveling from P1 to P2 within a specific time frame and under the influence
of the central body C. Solving Lambert’s problem is key to planning efficient interplanetary
trajectories.

Thus, Lambert’s problem plays a vital role in trajectory planning, especially

when considering the segments between flybys. It helps determine the velocities

of a spacecraft as it departs from one planet (P1) and arrives at another (P2),

while accounting for the gravitational influence of the Sun (C) during the journey

between the two planets (see Figure 6).

Solving Lambert’s problem involves the application of differential equations

related to the two-body problem [23]. Specifically, it establishes the relationship

between the time of flight, the distances from the gravitational body and the

characteristics of the orbit (like the semi-major axis).

The underlying mathematics to solve this problem are very complicated and

therefore out of the scope of this paper [1]. Fortunately, modern Python libraries

effectively handle these calculations for us. However, it should be noted that

these calculations are very computationally intensive. This imposes a significant

constraint when attempting to optimise trajectories.
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2.7 Optimization

With all those fundamental concepts explained, we can compute a spacecraft’s

trajectory when specific parameters such as the initial direction and velocity, the

timings for all the flybys and powered maneuvers and the timing or the arrival are

provided. This computation is relatively straightforward. However, the difficulty

arises when we aim to achieve a predetermined trajectory from point A to point

B without knowing all these variables. In this case, we need to determine the

optimal parameters, which include:

• Departure date

• Flyby dates

• Arrival date

• Deep Space Maneuvers

• Powered flybys

These parameters p can be collectively represented as a list, for example

p = [p1, p2, p3, . . .] . (15)

The goal of optimization in this context is to minimise the spacecraft’s total

change in velocity, or ∆v. As mentioned in Section 2.5, ∆v is a critical factor in

mission design because it directly correlates with fuel consumption and mission

feasibility.4

To formalise this optimization process, we define a function

f(p) = ∆v . (16)

The objective is to minimise ∆v by adjusting the input parameters. This pro-

cess is essentially a reversal of the initial problem where we calculated trajectory

based on given conditions.

However, optimization presents its complexities. These interconnections make

it challenging to achieve an ideal balance, as small adjustments can lead to sig-

nificant changes in the overall mission plan [21]. This sensitivity to changes can

result in complex, sometimes unpredictable scenarios. For instance, a slight mod-

ification in the departure date can change the required flyby dates, which then

affects arrival timing and necessitates further adjustments to the spacecraft’s ve-

locity. This makes the optimization of multiple gravity assist and deep space

4In some scenarios, we may also aim to minimise flight time or strike a balance between
minimising both ∆v and flight duration.

15



maneuver (MGA-DSM) trajectories a non-trivial task.5

Another critical aspect of optimization is the selection of flybys. Different

sequences of planetary flybys can yield various outcomes in terms of ∆v and

overall mission profile. As such, the choice of which planets to use for gravity

assists can greatly influence mission efficiency.

Luckily, there are numerous complex algorithms to optimise MGA-DSM tra-

jectories, each operating fundamentally differently [20]. These include:

• Genetic Algorithms (GA)

• Differential Evolution (DE)

• Particle Swarm Optimization (PSO)

• Multi-Start (MS)

• Monotonic Basin Hopping (MBH)

The DE (Differential Evolution) and GA (Genetic Algorithm) algorithms are part

of the broader class of Evolutionary Algorithms (EAs). They are optimization

techniques inspired by the process of natural selection and biological evolution.

These algorithms typically involve populations of candidate solutions that evolve

over generations, applying mechanisms such as mutation, crossover and selection.

DE focuses on perturbing candidate solutions using the differences between indi-

viduals, while GA uses genetic operators like crossover and mutation to explore

the search space [20].

On the other hand, PSO (Particle Swarm Optimization) is categorised as

an agent-based algorithm, where multiple individual ”particles” move through

the solution space based on their own experience and that of their neighbors.

These particles adjust their positions according to certain rules, inspired by social

behaviors such as bird flocking or fish schooling [20].

In contrast, MS (Multistart) and MBH (Monotonic Basin Hopping) algorithms

rely on performing multiple local searches. These methods begin by exploring the

solution space from different starting points and then use gradient-based methods

to refine solutions in the surrounding area of those starting points. The goal is to

avoid getting trapped in local minima by leveraging multiple independent searches

across the problem space. These algorithms are often used when the problem is

highly nonlinear or contains many local optima. Therefore, they are well-suited

for complex optimization tasks, such as MGA-DSM trajectory optimization [20].

As we design our own mission, we will return to these algorithms and use them

in Section 4.1 and 4.2, in order to navigate the complex landscape of trajectory

optimization.

5In fact, the problem is so complex that the European Space Agency (ESA) has organised
Global Trajectory Optimization Problems (GTOP) competitions, where scholars from different
universities compete to find the best possible trajectories [19].
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3 Implementation of an Existing Mission

Now that the fundamental concepts have been explained, it is time to apply them

to an example of an existing mission. For this purpose, the Cassini-Huygens

mission has been selected.

3.1 Historical Background

The Cassini-Huygens mission, launched in 1997, was a joint effort between NASA,

ESA and ASI (Italian Space Agency), designed to explore Saturn and its moons

[24]. The mission followed a complex interplanetary trajectory, using multiple

powered gravity assists (MGA), including flybys of Venus, Earth and Jupiter, to

reach Saturn in 2004, as illustrated in Figure 7.

Figure 7: Cassini’s interplanetary flight path [24]. It started with its launch from Earth on
October 15, 1997, followed by a series of gravity assist flybys: Venus (April 26, 1998 and June
21, 1999), Earth (August 18, 1999) and Jupiter (December 30, 2000). Cassini arrived at Saturn
on July 1, 2004. The gravity assist flybys increase the spacecraft’s velocity relative to the Sun,
enabling it to reach Saturn. The use of the Earth → Venus → Venus → Earth → Jupiter →
Saturn trajectory allowed Cassini to complete its journey to Saturn in 6.7 years, without using
too much fuel.

Once there, the Cassini orbiter studied Saturn’s atmosphere, rings and mag-

netic field, while the Huygens probe descended to the surface of Titan, Saturn’s

largest moon.

Cassini-Huygens is an ideal example for this work, because it successfully

utilised core principles of space trajectory design. These include gravity assists

and DSMs, which were essential for navigating the spacecraft to reach Saturn and

its moons.
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3.2 Mission-Specific Considerations

3.2.1 Advantages

This mission offers notable advantages, as we can simply reuse the documented

sequence of planetary flybys and their dates to recreate the trajectory. This

means that we can skip the optimization process, as it has already been effectively

handled.

3.2.2 Simplification

The spacecraft used a DSM on December 3, 1998, between its two flybys of

Venus. For simplicity, we will disregard this DSM and focus solely on analysing

the trajectory in terms of powered flybys.

3.2.3 Python Library poliastro

poliastro is a python library designed for interactive astrodynamics and orbital

mechanics [13]. It provides an accessible way to calculate and plot trajectories.

We will especially make use of functions for calculating ephemerides, based on

NASA’s JPL data. Additionally, it features an integrated solver for the Lambert

problem (poliastro.iod.izzo.lambert), which immensely simplifies our task

[14].

However, a significant drawback is that the library is no longer maintained,

requiring an older version of Python (python3.10) to function properly. Addi-

tionally, poliastro only assists with providing planetary positions and solving

the Lambert problem. The majority of the work, including assembling the overall

trajectory and calculating the total ∆v, still requires custom scripts and addi-

tional calculations.

3.3 Implementation in Python

We first start by importing all the necessary libraries, as shown in the box below.

# Handle astronomical time for calculations

from astropy.time import Time

# Handle astronomical units for calculations

from astropy import units as u

# Represents celestial bodies for trajectory calculations

from poliastro.bodies import Sun, Earth, Saturn, Venus, Jupiter

# Computes planetary positions and velocities (ephemerides)

from poliastro.ephem import Ephem

# Solves Lambert's problem for orbital transfers

from poliastro.iod import izzo

# Creates and manages spacecraft orbits
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from poliastro.twobody import Orbit

# Calculates vector magnitudes, here for velocities

from poliastro.util import norm

The next step is to define the launch and arrival dates and flybys at each

planet.

# Defining the sequence of planetary flybys

# Each planet is represented by its JPL Heliocentric position

sequence = [

# Start at Earth (at 1997-10-15)

[Earth, Time("1997-10-15", scale="utc").tdb],

# First flyby at Venus (at 1998-04-26)

[Venus, Time("1998-04-26", scale="utc").tdb],

# Second flyby at Venus (at 1999-6-24)

[Venus, Time("1999-6-24", scale="utc").tdb],

# Third flyby at Earth (at 1999-8-18)

[Earth, Time("1999-8-18", scale="utc").tdb],

# Fourth flyby at Jupiter (at 2000-12-30)

[Jupiter, Time("2000-12-30", scale="utc").tdb],

# Arrival at Saturn (at 2004-07-01)

[Saturn, Time("2004-07-01", scale="utc").tdb]

]

Then, we can calculate the trajectory.

# Loop through each pair of consecutive planets in the sequence

for i in range(len(sequence)-1):

# Get the position (r0) and velocity (v0) of the current

planet at the specified time↪→

r0, v0 = Ephem.from_body(sequence[i][0],

sequence[i][1]).rv()↪→

# Get the position (r1) and velocity (v1) of the next planet

at the specified time↪→

r1, v1 = Ephem.from_body(sequence[i+1][0],

sequence[i+1][1]).rv()↪→

# Solve Lambert's problem between the two planets to find

the transfer orbit vectors↪→

l0, l1 = izzo.lambert(Sun.k, r0[0], r1[0],

sequence[i+1][1]-sequence[i][1])↪→

# Create an orbit object based on the initial position and

transfer orbit velocity↪→

orbit = Orbit.from_vectors(Sun, r0[0], l0, sequence[i][1])

Continuing from the previous steps, once we have calculated the trajectory

using the Lambert solution, we can visualise the results by plotting the trajectory.
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The poliastro library provides simple functions for plotting orbits and flybys

(StaticOrbitPlotter.plot ephem) [15]. The resulting plot is shown in Figure

8.

Figure 8: Calculated trajectory of the Cassini-Huygens spacecraft. It shows its gravitational
assists and interplanetary journey from Earth to Saturn. The plot depicts key flyby events at
Earth, Venus and Jupiter between 1997 and 2004, with colour-coded segments for each phase
of the journey. The spacecraft’s transfer orbits for each leg were calculated using Lambert’s
problem to determine the optimal path between planetary flybys.

3.3.1 Calculating Delta-v

The next step in our analysis is to calculate the total ∆v. As discussed in Section

2.5, minimising ∆v is essential for optimising fuel efficiency, which in turn affects

the mission’s overall feasibility, cost and payload capacity.

In this context, the ∆v of a single flyby is defined as the increase in the

spacecraft’s velocity relative to the planet responsible for the flyby. The incom-

ing velocity is given by vin − vplanet, while the outgoing velocity is vout − vplanet.

Therefore, ∆v is the difference in the magnitudes of these two velocities. Mathe-

matically, this can be expressed as

∆vflyby = |vout − vplanet| − |vin − vplanet| . (17)

While ∆vflyby quantifies the difference in velocity relative to each planet, we

may introduce ∆vtotal or simply total ∆v, which quantifies the total change in

velocity of a mission.
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When calculating the total ∆v, it is also necessary to account for the initial

∆v when the spacecraft needs to accelerate when departing from Earth (∆vdep),

and the final ∆v, when the spacecraft needs to slow down at the arrival at Saturn

(∆varr).

The total ∆v can therefore be expressed as

∆vtotal = ∆vdep +
∑

∆vflyby +∆varr . (18)

Note that while vin, vout and vplanet are vectors, ∆vtotal, ∆vflyby, ∆vdep and ∆varr

are numbers.

As mentioned in Section 2.7, our goal is ultimately to minimise the ∆vtotal

(which will be addressed later in Section 4). Intuitively, adding flybys might

not seem beneficial, as they only increase
∑

∆vflyby. However, this is not the

case. The theory behind it is that while powered flybys do require fuel (and

thus increase the ∆vtotal), the ∆vdep and ∆varr become smaller. In the end,

the increase in ∆vflyby is more than offset by the resulting decrease in ∆vdep

and ∆varr, as powered flybys are highly efficient because they also leverage the

planet’s velocity. Thus, adding flybys ultimately reduces the ∆vtotal.
6 Figure 9

illustrates well, how omitting flybys increases the ∆vtotal.

Here is my Python code that implements the ∆vtotal calculation based on the

principles discussed above.

# Variable to store the outgoing velocity from the prev. flyby

last_l1 = None

# Set total delta-v to zero, with units of km/s

total_dv = 0 * u.km/u.s

# Loop through each pair of planets in the flyby sequence

for i in range(len(sequence)-1):

# Get the position (r0) and velocity (v0) of the current

planet at the specified time↪→

r0, v0 = Ephem.from_body(sequence[i][0],

sequence[i][1]).rv()↪→

# Get the position (r1) and velocity (v1) of the next planet

at the specified time↪→

r1, v1 = Ephem.from_body(sequence[i+1][0],

sequence[i+1][1]).rv()↪→

# Solve Lambert's problem between the two planets to find

the transfer orbit vectors↪→

l0, l1 = izzo.lambert(Sun.k, r0[0], r1[0],

sequence[i+1][1]-sequence[i][1])↪→

6Note that in the case of an unpowered flyby, ∆vflyby = 0.
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# If it is the first leg of the journey, calculate the

departure delta-v from Earth↪→

if not i:

total_dv += norm(l0 - v0[0]) # Add the delta-v required to

leave Earth's orbit↪→

# For flybys, calculate the delta-v for each maneuver

if i:

inc_vel = norm(last_l1 - v0[0]) # Incoming velocity

relative to the planet↪→

out_vel = norm(l0 - v0[0]) # Outgoing velocity relative

to the planet↪→

total_dv += out_vel - inc_vel # Add the delta-v for the

flyby maneuver↪→

# Store the outgoing velocity (l1) for use in the next

iteration↪→

last_l1 = l1

# Add the final delta-v required to slow down when arriving

total_dv += norm(l1 - v1[0])

Running this script results in a ∆vtotal of 12.524 km/s.

3.3.2 Shortcomings

One of the main shortcomings of this approach is the lack of precise orbital inser-

tion calculations, particularly for Saturn and its moon Enceladus. The method

simply calculates transfer trajectories between planets but does not account for

the critical maneuvers required for Saturn orbit insertion, which are crucial to

actually enter Saturn’s gravitational sphere and remain in orbit, rather than just

fly by.

Additionally, while the method uses gravity assists to calculate flybys, it does

not account for important parameters such as the deflection angle (δ) and the

direction of the spacecraft after each gravity assist. The direction of the space-

craft’s velocity vector after the flyby is crucial, as it determines the subsequent

trajectory and future orbital dynamics. In real missions, both of these factors are

critical for precisely adjusting the spacecraft’s path, as they influence the timing

and location of subsequent maneuvers. Ignoring them leads to a simplified, less

accurate model that may not reflect the exact conditions necessary for achieving

mission objectives.

Moreover, this approach does not include any DSMs. The actual Cassini mis-

sion, for example, had a significant DSM between its Venus flybys [24]. Excluding

DSMs leads to a simplified trajectory that does not reflect the full complexity of

real interplanetary missions.
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3.4 Effect of Parameters

Understanding the impact of various parameters on the spacecraft’s trajectory is

critical for optimising interplanetary missions.

3.4.1 Removing Flybys

Flybys help save fuel by boosting velocity without using propellant. Removing

some flybys increases the total ∆v, requiring more fuel and potentially extending

mission duration, as illustrated in Figure 9. Simulating this effect highlights the

importance of each gravity assist in reducing fuel needs.

Figure 9: Effect of different planetary flyby sequences on the total change in velocity (∆v)
for a spacecraft. The sequence used by NASA for the Cassini-Huygens mission (E-V1-V2-E-J-
S) results in the lowest total ∆v, indicating it was the most efficient trajectory. In contrast,
omitting flybys leads to significantly higher total ∆v values. This is less desirable, as they
require more energy and fuel and make the mission less efficient.

3.4.2 Changing Flyby Dates

Timing is critical for flybys. Even small changes in flyby dates affect the space-

craft’s trajectory and increase ∆v due to altered planetary positions. Adjusting

dates shows how sensitive missions are to timing and how unintuitive the effects
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might be. This makes optimization a complex task, as mentioned in Section 2.7.

Figure 10 illustrates this by plotting the total ∆v with respect to the date of the

second flyby at Venus.

Figure 10: Effect of shifting the second Venus flyby date (from NASA’s original date of June
24, 1999) on the total change in velocity (∆v) for the mission. The x-axis represents the shift in
days, while the y-axis (logarithmic scale) shows the resulting total ∆v. The plot demonstrates
that even small changes in the flyby date can lead to unintuitive and highly variable effects on
∆v, making optimization complex. The red circle marks a local minimum, which could very
well trap an optimization algorithm, as it might mistakenly conclude that the global minimum
has been reached. However, the true global minimum lies at x = 0. This illustrates the
challenges faced in MGA-DSM trajectory optimization, where optimization algorithms must
carefully navigate such local minima to find the optimal solution.
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4 Designing a New Mission

In this section, we focus on designing and optimising our own interplanetary

mission, which uses multiple gravity assists and one DSM per leg of the journey.

4.1 Optimization Complexity

Optimising a mission from scratch is complex and computationally intensive. Un-

like the Cassini mission, where the flyby sequence and timing were predetermined,

we start with no fixed path, making the choice of planets, flyby dates and DSMs

open for exploration. This lack of a starting point highlights some key difficulties:

• Lack of Predefined Trajectories: With no established sequence of flybys

or maneuvers, we must optimise the entire trajectory from scratch, intro-

ducing numerous variables. Both the flyby dates and the selection and order

of planets for the flybys are entirely unconstrained.

• Parameter Interdependence: As discussed earlier in Section 2.7 and

3.4.2, the interdependencies among key mission parameters significantly

complicate the optimization process. For instance, adjusting the depar-

ture date can lead to cascading changes in flyby timings, arrival dates and

the required velocities at various points. This interconnectedness results in

high sensitivity to even minor adjustments, resulting in complex, non-linear

and chaotic behaviour [21], as illustrated in Figure 10.

• Mathematical Complexity: Optimising an interplanetary mission in-

volves tackling advanced trajectory and optimization problems, which can

be mathematically intensive. This area of research is often at the forefront

of aerospace studies, as evidenced by competitions like ESA’s Global Trajec-

tory Optimization Competition, which highlight the significant challenges

involved [19].

• Computational Requirements: Identifying the optimal trajectory en-

tails navigating an extensive search space of potential paths. Evaluating

countless possibilities demands advanced algorithms and substantial pro-

cessing resources, making the optimization process both non-trivial and

time-consuming.

Given these complexities, we rely on existing software to handle the heavy lifting.

4.2 Choosing the Right Software

While NASA provides advanced numerical software tools for trajectory optimiza-

tion, they are often costly or unavailable for widespread use:
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• GMAT [9]: Open-source but lacks the advanced optimization capabilities.

• Copernicus [6]: Developed by NASA, but is not publicly accessible.7

• SNOPT7 [16]: A robust optimization solver, but prohibitively expensive

for most users.

On the other hand, the European Space Agency (ESA) is much more open re-

garding software accessibility. They provide open-source alternatives that are also

well documented, such as pykep and pygmo [12][10].

4.2.1 pykep and pygmo

For this project, we use pykep and pygmo, open-source libraries provided by ESA.

• pykep: This library specialises in trajectory design, including MGA mis-

sions with DSMs. It also includes solvers for Lambert’s problem. We rely

on the pykep.trajopt.mga 1dsm method for missions with a single DSM

between flybys [11]. Essentially, this library allows us to define the func-

tion f([p1, p2, p3, . . .]) = ∆v, which needs to be optimised by tweaking the

parameters pi.

• pygmo: This package allows us to apply advanced optimization algorithms

like the COBYLA solver and a Monotonic Basin Hopping algorithm (MBH)

to solve the problem efficiently and find the parameters pi, which ultimately

minimise the total ∆v of the mission.

4.2.2 Algorithms Used: COBYLA and MBH

In this project, two optimization algorithms (COBYLA and MBH) are used in

combination to efficiently solve the trajectory problem.

• COBYLA (Constrained Optimization By Linear Approximations) [3] is a

local optimization algorithm that improves solutions step by step within a

limited area. It does this by creating a linear approximation of the objective

function near the current point, helping to decide where to evaluate next.

The algorithm focuses on ”trust regions,” which means it only explores

changes within a certain distance from the current solution. COBYLA is

especially useful when evaluating the objective function is costly or when the

function is not smooth (non-differentiable). It can also handle constraints,

making it versatile for different types of problems.

7I even wrote an email to NASA to request access to the Copernicus software. Unfortunately,
they responded that the “Copernicus software is only available with a U.S. government contract
and purpose.”
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• Monotonic Basin Hopping (MBH) [4] is a stochastic global optimization

method. It runs multiple local optimizations from different starting points,

allowing the search to ”hop” out of local minima and explore more of the

solution space to find the global minimum, or the best overall solution.

By combining COBYLA to fine-tune local solutions and MBH to explore globally,

the approach helps avoid suboptimal solutions and increases the likelihood of

finding the most efficient trajectory. For this project, I wrote custom scripts to

adapt these algorithms for MGA-DSM trajectory optimization, configuring them

to suit the problem’s constraints and integrating them with my trajectory models.

4.3 Implementation in Python

First, we import all the necessary libraries.

# Provides tools for trajectory optimization and astrodynamics

import pykep as pk

# Provides algorithms for complex optimization problems

import pygmo as pg

# Handle astronomical time for calculations

from astropy.time import Time

Then, we define the planetary sequence for the departure, flybys and arrival.

# Defining the sequence of planetary flybys

# Each planet is represented by its JPL Heliocentric position

sequence = [

pk.planet.jpl_lp('earth'), # Start at Earth

pk.planet.jpl_lp('venus'), # Flyby at Venus

pk.planet.jpl_lp('mars'), # Flyby at Mars

pk.planet.jpl_lp('saturn') # Arrival at Saturn

]

The next step is to define the MGA-DSM trajectory, that needs to be opti-

mised. Essentially, this can be seen as the function f([p1, p2, p3, . . .]) = ∆v, which

needs to be optimised.

# Creating a MGA-1DSM trajectory optimization problem

(User-Defined Problem, UDP)↪→

udp = pk.trajopt.mga_1dsm(

seq=sequence, # The flyby sequence defined earlier

t0=[ # The launch window: start and end dates

Time("2025-01-01").mjd-51544.5, # Earliest launch date

Time("2035-01-01").mjd-51544.5 # Latest launch date

],
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tof_encoding="alpha", # Encoding for time of flight: "alpha"

means flexible segment duration↪→

tof=[3*365, 10*365], # Total time of flight range (in days)

vinf=[10., 15.], # Range (min and max) for hyperbolic excess

velocity (in km/s)↪→

add_vinf_dep=True, # Use dep. velocity for optimization

add_vinf_arr=True, # Use arr. velocity for optimization

orbit_insertion=True, # Perform orbit insertion at Saturn

e_target=0, # Target eccentricity for the orbit at arrival

rp_target=240e6, # Target periapsis radius at Saturn (in km)

multi_objective=False # Single-objective optimization

(minimising delta-v)↪→

)

# Defining a problem object using the UDP created above

prob = pg.problem(udp)

# Setting a very small constraint tolerance for optimization

# Tight constraint tolerance for precise optimization

prob.c_tol = 1e-8

Then, we can use the pygmo package to run the optimization algorithm on our

problem. This will give us parameters (flyby dates, timings for DSMs,...) which

return a minimal total ∆v.

# Create an instance of the NLopt 'COBYLA' algorithm

(Constrained Optimization BY Linear Approximations)↪→

uda = pg.nlopt("cobyla")

# Set the relative tolerance for the decision variables

# If the change in variables is below this, the algorithm stops

uda.xtol_rel = 1e-8

# Set the relative tolerance for the objective function

uda.ftol_rel = 1e-8

# Set the maximum number of function evaluations allowed to

prevent infinite loops or excessive runtime↪→

uda.maxeval = 100_000

# Monotonic Basin Hopping (MBH) approach to avoid local minima

uda2 = pg.mbh(uda, 5, 0.05)

# Create the new optimization algorithm object using MBH

algo = pg.algorithm(uda2)

# Create a population of 100,000 individuals

# A large population helps improve the chances of finding the

global optimum by covering more of the search space.↪→
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# The decision vectors are randomly initialised

pop = pg.population(prob, 100_000)

# Run the evolutionary optimization algorithm on the population

pop = algo.evolve(pop)

Running this script gives us the optimised parameters (pop.champion x) and

the resulting ∆vtotal when using those parameters (pop.champion y). In this case,

∆vtotal is 26846.012 m/s or 26.846 km/s and the parameters for the function

f(parameters) are:

First Leg: earth to venus
Departure: 2027-May-17 09:22:38.654340 (9998.390725165971 mjd2000)
Duration: 864.0828467861795days
VINF: 10.833576266715246 km/sec
DSM after 372.12526143385725 days
DSM magnitude: 1279.1130871062674m/s

leg no. 2: venus to mars
Duration: 356.1282801539626days
Fly-by epoch: 2029-Sep-27 11:21:56.616666 (10862.47357195215 mjd2000)
Fly-by radius: 2.286171655195602 planetary radii
DSM after 45.60161564820116 days
DSM magnitude: 272.4243475528733m/s

leg no. 3: mars to saturn
Duration: 1904.793916107756days
Fly-by epoch: 2030-Sep-18 14:26:40.021968 (11218.601852106112 mjd2000)
Fly-by radius: 5.501264486243985 planetary radii
DSM after 245.14135554836133 days
DSM magnitude: 8282.146055463349m/s

Arrival at saturn
Arrival epoch: 2035-Dec-06 09:29:54.373678 (13123.39576821387 mjd2000)
Arrival Vinf: 5956.903720514249m/s
Insertion DV: 6178.752281491581m/s
Total mission time: 8.555797516900475 years (3125.005043047898 days)
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Using those parameters results in the trajectory shown in Figure 11.

Figure 11: Best optimised spacecraft trajectory for an Earth → Venus → Mars flyby sequence.
This 3D plot displays the best optimised trajectory identified for a spacecraft travelling from
Earth to Saturn using gravity assists at Venus and Mars. The spacecraft departs Earth on May
17, 2027, performs a Venus flyby on September 27, 2029, followed by a Mars flyby on September
18, 2030, before reaching Saturn on December 6, 2035. One DSM is performed between each
planetary flyby. Planetary orbits are shown in purple, while the spacecraft’s path is highlighted
in red and blue. This trajectory minimises the total ∆v required for the mission.

4.3.1 Different Flyby Sequences

Now let us optimise trajectories using different flyby sequences. An Earth →
Venus → Mars → Saturn sequence might not be the best option. The Cassini-

Huygens mission for example used a Earth → Venus → Venus → Earth → Jupiter

→ Saturn sequence to effectively reach Saturn. Figure 12 illustrates the compar-

ison of various trajectory options, highlighting the potential benefits of more

complex flyby paths in optimising mission efficiency.
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Figure 12: Effect of flyby sequence on total ∆v for optimised trajectories. This bar chart
illustrates the total ∆v required for various planetary flyby sequences in a mission from Earth to
Saturn. The sequences include combinations of gravity assists at Venus (V), Mars (M), Jupiter
(J) and Earth (E), with the final destination being Saturn (S). They have been manually defined,
relying on our intuition of which flyby sequences might make sense. However, this approach may
overlook other but potentially more efficient sequences. Among the sequences we have chosen,
E-J-S and E-V-S show very low total ∆v values, while E-V-V-E-J-S has the highest. Therefore,
an Earth-Jupiter-Saturn sequence might be the most fuel-efficient option for optimising the
trajectory to Saturn.

4.3.2 Shortcomings

There are some limitations in our approach:

• No Powered Flybys: We assume that all flybys are passive, which may

not be entirely accurate in real missions using Oberth maneuvers.

• Deep Space Maneuvers: While our approach uses DSMs, it simplifies

the process by considering only one DSM per leg.

• Flyby Sequences: We manually define the flyby sequence, relying on our

intuition to select potentially logical sequences. However, this approach

may overlook less obvious but more efficient flyby sequences.
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Despite these limitations, our methodology provides reasonable estimates for mis-

sion planning and calculating total ∆v.

4.4 General Limitations of Optimization

Even with advanced tools, optimization has inherent challenges. The search space

is vast and local minima can trap optimization algorithms, preventing them from

finding the true best solution. Additionally, practical issues such as hardware

limitations, algorithm settings and time constraints impact the results.

Furthermore, solving MGA-DSM trajectories requires the use of iterative opti-

mization methods which approximate the optimal solution [2]. Thus, this method

has no guarantee of giving the best trajectory and can propose different solutions

for the same input settings.
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5 Reflection

5.1 Strengths

One of the key strengths of this project was the successful simulation of an ex-

isting mission that reached Saturn. By employing gravity assists and DSMs, we

replicated the fundamental elements of the Cassini-Huygens mission. We demon-

strated an understanding of core concepts, such as gravity assists, the Oberth

effect and optimization in interplanetary trajectories. These core concepts form

the backbone of space mission planning.

Another strength was the development of our own feasible mission plan from

Earth to Saturn. We managed to optimise a trajectory and incorporate key

mission elements such as flyby sequences and DSMs, which are crucial for reducing

fuel consumption and achieving realistic mission timelines.

Additionally, the use of ESA’s optimization tools pykep and pygmo helped

guide the mission planning, enabling us to implement realistic solutions and op-

timise the MGA-DSM trajectory efficiently.

5.2 Limitations

However, there were several limitations to this project. First, while the mission

plan successfully reached Saturn, it did not extend to Enceladus, such as perform-

ing an orbit insertion around the moon or landing on it, which was the primary

goal. We were only able to simulate an orbit insertion at Saturn, although with

an orbit radius similar to that of Enceladus. Therefore, a close encounter with

the moon, without requiring too many impulsive maneuvers to alter the space-

craft’s trajectory, should be possible. Nonetheless, this could still be considered

an incomplete realisation of the project’s objective.

Other limitations were the ephemerides used for the optimization (pk.pla-

net.jpl lp(’<planet>’)). These only provide accurate extrapolations of plan-

etary positions up to 2050. Beyond this point, the calculations become too im-

precise. As a result, we were forced to restrict the launch window to a narrow

timeframe (2025 - 2035), potentially overlooking better planetary alignments for

gravity assists. It is important to note that the success of such trajectories heavily

depends on perfect planetary alignments, which occur only infrequently. Thus, a

broader launch timeframe would likely have resulted in identifying a more efficient

trajectory.

The manual comparison of different flyby sequences was also suboptimal. Due

to the complexity of this optimization, it was not possible to automate the testing

of all possible sequences efficiently. The manual nature of this comparison relied

on our intuition and restricted our ability to explore more diverse and potentially
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more efficient sequences.

Additionally, the project heavily relied on a third-party optimization algo-

rithm provided by the ESA. While this allowed us to simulate a feasible mission,

the limitation here was our lack of deep understanding of how the optimization

algorithm functioned internally. This left us reliant on a ”black box” approach,

where we input data without fully controlling the mechanics of how the outputs

were generated.

On top of that, the settings of the optimization algorithm were chosen some-

what arbitrarily, as I did not have a deep understanding of the underlying me-

chanics of the algorithm. Parameters such as the relative tolerance for the decision

variables, the relative tolerance for the objective function, the population size and

the maximum number of evaluations were selected based on available defaults or

trial and error, rather than a detailed, theoretical understanding of their impact

on the optimization process. As a result, the configuration of the algorithm may

not have been ideal for the problem at hand, which could have led to suboptimal

results. Specifically, the algorithm might have missed other potentially better

trajectories due to these imperfect settings.

Lastly, there were inconsistencies in the use of powered flybys and DSMs. We

used powered flybys and no DSMs in the implementation of the Cassini-Huygens

mission, but used no powered flybys but DSMs in our own mission. Therefore,

this inconsistency resulted in an uneven comparison between the two missions.

5.3 Encountered Challenges

One of the greatest challenges was the lack of accessible software. Several NASA-

developed tools like Copernicus and GMAT are either expensive or not publicly

accessible. Instead, we had to rely on ESA’s tools, which, while functional, had

their own limitations in terms of user-friendliness and documentation.

Moreover, the topic itself was extremely complex, especially the optimization

of MGA-DSM trajectories. Therefore, the fundamental functioning of these op-

timization algorithms as well as how to solve Lambert’s problem could not be

explained, as they would have gone beyond the scope of this work.

5.4 Improvements and Additions

There are several ways this project could be improved. One could be the use

of different optimization algorithms or even combine multiple ones to further

increase the efficiency of the mission. Existing research has attempted this and

demonstrated the positive effects it can have on algorithm efficiency [20].

Another improvement would be implementing our own optimization algo-

rithm, allowing for a deeper understanding of the optimization process and pro-
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viding full control over trajectory design. This approach would eliminate the

reliance on third-party tools and also address the issue of imperfect algorithm

settings. With a custom algorithm, we could better understand the impact of

these algo settings and, consequently, make more informed and effective choices.

Using different ephemerides that extrapolate planetary positions beyond 2050

would also be beneficial, as it would enable a broader launch window and increase

the likelihood of identifying more efficient trajectories.

In addition, we could include other celestial bodies as candidates for flybys.

For example, NASA’s Galileo mission (1989) used flybys of asteroids 243 Ida and

951 Gaspra during its journey to Jupiter [28]. Introducing asteroids as poten-

tial flyby targets could add more possible trajectories and further minimise fuel

consumption.

Furthermore, we could calculate the optimal launch location on Earth and the

direction for the rocket’s launch.8

5.5 Final Words

Reflecting on this project, I find it truly remarkable how NASA accomplished

similar missions in the 1970s. For example, Pioneer 10 (launched in 1972) be-

came the first spacecraft to use a gravitational slingshot effect to reach escape

velocity and leave the Solar System [35]. The computational and technological

limitations they faced compared to today’s powerful tools and software highlight

just how groundbreaking these early missions were. This makes the success of

early missions like Pioneer 10 and Voyager 1 and 2 even more impressive.

Interplanetary travel reflects our innate curiosity, a drive to explore the un-

known and answer profound questions about existence. As discussed in the in-

troduction, missions to Enceladus, with its potential for life, embody this quest.

They challenge us to find out if we are truly alone in the universe and redefine

our place within it.

Ultimately, astrophysics is not only about advancing science and technology

but also about expanding our collective understanding of the universe. By build-

ing on past achievements, we continue to push the boundaries of exploration,

seeking knowledge that could reshape how we view ourselves and our place in the

cosmos.

8Launching near the equator would be advantageous, as it takes advantage of the Earth’s
rotational speed to provide a centrifugal boost, thereby increasing the rocket’s initial velocity. A
prime example of this is the Guiana Space Centre in French Guiana, which is used by the ESA.
This facility’s location allows rockets to gain additional momentum from the Earth’s rotation,
making launches more efficient and reducing fuel requirements [29].
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